PIC Terminal Sires

PIC Terminal Sires are available from Birchwood and PIC. Contact your PIC or Birchwood sales representative for more information.
The 2005 and 2006 results showed a 6.5% improvement in gestation feed intake by 1 to 2 lbs. on all females. This is another work station in the assembly line that demonstrates the impact production technology makes on the intensity and duration of a sow's pregnancy.

- **Table 1**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.
 - **Table 2**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.

Table 2 shows a correlation between increasing gestation feed intake and lactation feed intake. With the increased feed intake comes an increase in gestation feed intake. By increasing gestation feed intake, the sow's uterine contractions to draw the fluid are increased. In order to increase milk production, the sow needs to be fed to promote this uterine activity. The additional feed intake allows the sow to produce a greater amount of milk, which in turn increases the farrowing rate.

- **Table 3**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.

Table 3 shows a positive correlation between increasing gestation feed intake and lactation feed intake. By increasing gestation feed intake, the sow's uterine contractions to draw the fluid are increased. In order to increase milk production, the sow needs to be fed to promote this uterine activity. The additional feed intake allows the sow to produce a greater amount of milk, which in turn increases the farrowing rate.

- **Table 4**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.

Table 4 shows a positive correlation between increasing gestation feed intake and lactation feed intake. By increasing gestation feed intake, the sow's uterine contractions to draw the fluid are increased. In order to increase milk production, the sow needs to be fed to promote this uterine activity. The additional feed intake allows the sow to produce a greater amount of milk, which in turn increases the farrowing rate.

- **Table 5**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.

Table 5 shows a positive correlation between increasing gestation feed intake and lactation feed intake. By increasing gestation feed intake, the sow's uterine contractions to draw the fluid are increased. In order to increase milk production, the sow needs to be fed to promote this uterine activity. The additional feed intake allows the sow to produce a greater amount of milk, which in turn increases the farrowing rate.

- **Table 6**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.

Table 6 shows a positive correlation between increasing gestation feed intake and lactation feed intake. By increasing gestation feed intake, the sow's uterine contractions to draw the fluid are increased. In order to increase milk production, the sow needs to be fed to promote this uterine activity. The additional feed intake allows the sow to produce a greater amount of milk, which in turn increases the farrowing rate.

- **Table 7**: Relationship between lactation feed intake and gestation feed intake:
 - **P** = 0.005 indicates statistical significance.

Table 7 shows a positive correlation between increasing gestation feed intake and lactation feed intake. By increasing gestation feed intake, the sow's uterine contractions to draw the fluid are increased. In order to increase milk production, the sow needs to be fed to promote this uterine activity. The additional feed intake allows the sow to produce a greater amount of milk, which in turn increases the farrowing rate.
Long and Hufford Farms, Inc. - Efficiency-Focused Production

Long and Hufford Farms, Inc. is located in Champaign and Carroll Counties, Indiana. This area of Illinois has a rich history stretching back to the early 19th century when the area was inhabited by Native American tribes. The region was later settled by pioneers and has a significant African-American and Native American workforce in 1811.

When you walk into the office, Long and Hufford’s Farms office you soon notice one wall has several aerial photographs of the farm. Among these is a picture in the farm’s Vision Statement:

“This is our farm and we are committed to its operation and we envision it as continuing to be a successful, family-owned and operated enterprise for generations to come. The area of focus is to produce high-quality pork and livestock with a clean, safe, and healthy place to live and work. It is our goal to provide high-quality pork and livestock with a clean, safe, and healthy place to live and work.

In January, 2010, L&H shut down their own nursery and finishing spaces on their farm. Their 75-sow, farrow-to-finish operation. Today, Long and Hufford Farms is a 100-sow farrow-to-finish operation. Their son Naaman and Dale started farming on shares in 1963 and 1978, respectively, after their father, Clinton Long, purchased the original farm in 1941. Long and Hufford Farms is currently 5 generations old, 3 generations of the original family are still involved in the business, and 4 generations of the current family are actively involved in the farm. Their vision is to provide high-quality feed for our livestock, while maintaining a competitive feeder pig price and timely manner. They will also produce enough corn to meet their production requirements, while still maintaining a competitive feeder pig price and timely manner. Their goal is to produce a high-quality embryo, because of the land by allowing adequate pasture, fertility, conservation and environmental practices. Their farm focus is on reducing the feed cost, indoor finishing, and grain-based diets.

We envision our farm in future generations as being equal to or better than the competition. We will also produce enough corn to meet their production requirements, while still maintaining a competitive feeder pig price and timely manner. Our goal is to produce a high-quality embryo, because of the land by allowing adequate pasture, fertility, conservation and environmental practices. Their farm focus is on reducing the feed cost, indoor finishing, and grain-based diets.

Back row: Travis Crist, Brent Flowers, Dan Crist, Clinton Long, Naaman Signoret, 1970

• Identifying the value of stimulation
• Differences Between Artificial Insemination and Natural Service
• The forgotten period: early gestation
• Timing is the key to a successful service

• Day 0 to 21
• Begin heat checking around 24 weeks of age.
• Have all of the acclimatization and vaccinations in place before bringing in the weaned gilt.
• Monitor sows for constipation.
• Drop the farrowing room temperature 1 °C a day, starting 7 days prior to farrowing.
• Continue feeding the high energy diet until the room is at 68 °F.
• Continue feeding the high energy diet until the room is at 68 °F.

• A successful service (defined by a body score of ≥ 3.5) after 90 days of gestation to maximize the benefits of stimulation

• 97% - 100% detected in estrus
• 95% - 100% detected in estrus
• 90% - 100% detected in estrus

• Boar housed adjacent to gilts or boar trailing behind. This will facilitate complete boar management and AI procedures will help realize the benefits.

• 97% - 100% detected in estrus
• 95% - 100% detected in estrus
• 90% - 100% detected in estrus

• 1 83.0% 71.0% -12.0%
• 2 90.2% 86.1% -4.1%
• 3 77.1% 58.3% -18.8%

A 90% gestation farrowing rate is achievable by increasing the value of stimulation and redefining the sow’s natural ability to reproduce. Juan Carlos Flores, DPI, said at the PIC 2011 Road Show to “Think of production in a new unit and not in a station on an existing farm. Only breed sows that are rock solid in heat. Those that are not solid in heat may be candidates for an embryo transfer.”

Table 1

...so that feeders in the farrowing station on an existing farm can be used to produce replacements for pigs that get lost or fall sick. These feeders will be fed at 12-16 quarts per minute – not only will this help keep the gilts’ stomachs full, it will also help keep the feeders clean and contain the feed from the floor. When the right females have been managed correctly, getting their feed is another...
Long and Hufford Farms, Inc. is located in Champaign and Carroll Counties, Illinois. This area of Illinois has a rich history dating back to the early 19th century when the area was occupied by the Kickapoo and Tecumseh tribes. These farms were later developed by the United States government as part of the Homestead Act of 1862. Long and Hufford Farms have a rich history dating back to the early 19th century. Long when he purchased the original farm in 1941 and operated it as a diversified crop and livestock farm through the years of staying true to the vision of Long and Hufford's farm. We envision our farm in future generations as being a clean, safe, and healthy place to live and work.

In January, 2010, L&H shut down their own off-farm feed mill and began sourcing both feed and purchased grains from local vendors. This allowed them to reduce labor and off-site boar stud and began sourcing both terminal and nursery/finisher sites. These two sites provided over 30,000 head per year and over 13,000 piglets annually. Staying with growing numbers of pigs in our herd means staying with growing numbers of genetics. This allowed them to reduce labor and overhead costs, allowing them to focus on genetics.

In the early stages of L&H, additional sow and boar information was sought through various channels. In 2000 and 2004 L&H purchased two boars and two gilts, respectively. These two boars provided a 36% increase in feed consumption above what the sow farm herd was producing. Having the extra finishing capacity allowed L&H to sell a low-energy diet, because of high feed costs, and maintain a strategic existing weight of 270 lbs. Condensation on the finishing space efficiency is documented by back-feeding their farms to feed the greatest amount of 270 lbs. and using a minimum of 250 lbs. for 92% L&H, this farm works with an additional 1,500 piglets per year, which would result in a 98% farrowing rate. If the farm's fertility is only 90%, this would work out to be 92%. This is a number that is achievable by minimizing the effects of management practices and proper utilization of the sow’s cycle.

Table 1: The improved PSG-435™/F with an 80% farrowing rate. If the farm's fertility is only 90%, this would work out to be 92%. This is a number that is achievable by minimizing the effects of management practices and proper utilization of the sow’s cycle.

Table 2: shows standard targets for a HNS program.

Table 3: shows the relationship between lactation feed and back-pressure.

Table 4: shows the relationship between lactation feed and back-pressure.

Table 5: shows the relationship between lactation feed and back-pressure.

Table 6: shows the relationship between lactation feed and back-pressure.

Table 7: shows the relationship between lactation feed and back-pressure.

Table 8: shows the relationship between lactation feed and back-pressure.

Table 9: shows the relationship between lactation feed and back-pressure.

Table 10: shows the relationship between lactation feed and back-pressure.

Table 11: shows the relationship between lactation feed and back-pressure.

Table 12: shows the relationship between lactation feed and back-pressure.

Table 13: shows the relationship between lactation feed and back-pressure.

Table 14: shows the relationship between lactation feed and back-pressure.

Table 15: shows the relationship between lactation feed and back-pressure.

Table 16: shows the relationship between lactation feed and back-pressure.

Table 17: shows the relationship between lactation feed and back-pressure.

Table 18: shows the relationship between lactation feed and back-pressure.

Table 19: shows the relationship between lactation feed and back-pressure.

Table 20: shows the relationship between lactation feed and back-pressure.

Table 21: shows the relationship between lactation feed and back-pressure.

Table 22: shows the relationship between lactation feed and back-pressure.

Table 23: shows the relationship between lactation feed and back-pressure.

Table 24: shows the relationship between lactation feed and back-pressure.

Table 25: shows the relationship between lactation feed and back-pressure.

Table 26: shows the relationship between lactation feed and back-pressure.

Table 27: shows the relationship between lactation feed and back-pressure.

Table 28: shows the relationship between lactation feed and back-pressure.

Table 29: shows the relationship between lactation feed and back-pressure.

Table 30: shows the relationship between lactation feed and back-pressure.

Table 31: shows the relationship between lactation feed and back-pressure.

Table 32: shows the relationship between lactation feed and back-pressure.

Table 33: shows the relationship between lactation feed and back-pressure.

Table 34: shows the relationship between lactation feed and back-pressure.

Table 35: shows the relationship between lactation feed and back-pressure.

Table 36: shows the relationship between lactation feed and back-pressure.

Table 37: shows the relationship between lactation feed and back-pressure.

Table 38: shows the relationship between lactation feed and back-pressure.

Table 39: shows the relationship between lactation feed and back-pressure.

Table 40: shows the relationship between lactation feed and back-pressure.
In today’s pork production industry, there are many different needs at the farm level, pork level and consumer level for options in terminal sire lines. However, producers, processors and consumers around the globe have spoken the clear choice for terminal sire-line genetics is PIC.

Whoever you choose as your farm’s terminal sire line, choosing PIC is the industry’s leading growth rate boar with greater survivability and robustness traits of this boar, combined with excellent feed conversion through improved efficiency and carcass yield, while maintaining desirable carcass traits for the packer and consumer. The new PIC terminal sire lines are designed to provide the highest potential to impact your pig gains, while either improving feed efficiency and maintaining optimal carcass traits, or in certain cases, improving feed efficiency, is in fuel savings. Likewise, the new PIC terminal sire lines are designed to provide the highest potential to impact your pig gains, while either improving feed efficiency and maintaining optimal carcass traits, or in certain cases, improving feed efficiency, is in fuel savings.

So which line is right for your operation? The newest addition to PIC’s terminal sire line is our new PIC 359 boar line. This boar is designed to provide the highest potential to impact your pig gains, while either improving feed efficiency and maintaining optimal carcass traits, or in certain cases, improving feed efficiency, is in fuel savings.

The Birchwood sales and technical service team will be attending many of the industry shows and regional pork conferences and trade shows this winter. Please mark your calendars to join us at the show in your area. The Birchwood sales and technical service team will be attending many of the industry shows and regional pork conferences and trade shows this winter. Please mark your calendars to join us at the show in your area.

Birchwood Genetics, Inc.
465 Stephens Road
Lapeer, MI 48446
800-523-2536
bgimain@birchwoodgenetics.com

The Birchwood sales and technical service team will be attending many of the industry shows and regional pork conferences and trade shows this winter. Please mark your calendars to join us at the show in your area. The Birchwood sales and technical service team will be attending many of the industry shows and regional pork conferences and trade shows this winter. Please mark your calendars to join us at the show in your area.

Birchwood Genetics, Inc.
465 Stephens Road
Lapeer, MI 48446
800-523-2536
bgimain@birchwoodgenetics.com
The newest addition to PIC’s terminal sire line is the PIC359. It has been designed to bring you information related to our product specifications manual. This publication summarizes PIC’s recommendations for the latest birchwood news, including the 2012 perforation test, and the 2012 perforation test for the latest birchwood news. The publication also includes a table of the latest birchwood news and the 2012 perforation test for the latest birchwood news.

The newest addition to PIC’s terminal sire line is the PIC359. It has been designed to bring you information related to our product specifications manual. This publication summarizes PIC’s recommendations for the latest birchwood news, including the 2012 perforation test, and the 2012 perforation test for the latest birchwood news. The publication also includes a table of the latest birchwood news and the 2012 perforation test for the latest birchwood news.

The newest addition to PIC’s terminal sire line is the PIC359. It has been designed to bring you information related to our product specifications manual. This publication summarizes PIC’s recommendations for the latest birchwood news, including the 2012 perforation test, and the 2012 perforation test for the latest birchwood news. The publication also includes a table of the latest birchwood news and the 2012 perforation test for the latest birchwood news.

The newest addition to PIC’s terminal sire line is the PIC359. It has been designed to bring you information related to our product specifications manual. This publication summarizes PIC’s recommendations for the latest birchwood news, including the 2012 perforation test, and the 2012 perforation test for the latest birchwood news. The publication also includes a table of the latest birchwood news and the 2012 perforation test for the latest birchwood news.

The newest addition to PIC’s terminal sire line is the PIC359. It has been designed to bring you information related to our product specifications manual. This publication summarizes PIC’s recommendations for the latest birchwood news, including the 2012 perforation test, and the 2012 perforation test for the latest birchwood news. The publication also includes a table of the latest birchwood news and the 2012 perforation test for the latest birchwood news.